Yersinia outer protein P suppresses TGF-beta-activated kinase-1 activity to impair innate immune signaling in Yersinia enterocolitica-infected cells.
نویسندگان
چکیده
Pathogenic Yersinia spp. use a panel of virulence proteins that antagonize signal transduction processes in infected cells to undermine host defense mechanisms. One of these proteins, Yersinia enterocolitica outer protein P (YopP), down-regulates the NF-kappaB and MAPK signaling pathways, which suppresses the proinflammatory host immune response. In this study, we explored the mechanism by which YopP succeeds to simultaneously disrupt several of these key signaling pathways of innate immunity. Our data show that YopP operates upstream of its characterized eukaryotic binding partner IkappaB kinase-beta to shut down the NF-kappaB signaling cascade. Accordingly, YopP efficiently impaired the activities of TGF-beta-activated kinase-1 (TAK1) in infected cells. TAK1 is an important activator of the IkappaB kinase complex in the TLR signaling cascade. The repression of TAK1 activities correlated with reduced activation of NF-kappaB- as well as AP-1-dependent reporter gene expression in Yersinia-infected murine macrophages. This suggests that the impairment of the TAK1 enzymatic activities by Yersinia critically contributes to down-regulate activation of NF-kappaB and of MAPK members in infected host cells. The inhibition of TAK1 potentially results from the blockade of signaling events that control TAK1 induction. This process could involve the attenuation of ubiquitination of the upstream signal transmitter TNFR-associated factor-6. Together, these results indicate that, by silencing the TAK1 signaling complex, Yersinia counteracts the induction of several conserved signaling pathways of innate immunity, which aids the bacterium in subverting the host immune response.
منابع مشابه
Yersinia outer protein P of Yersinia enterocolitica simultaneously blocks the nuclear factor-kappa B pathway and exploits lipopolysaccharide signaling to trigger apoptosis in macrophages.
Exposure of macrophages to bacteria or LPS mediates activation of signaling pathways that induce expression of self defense-related genes. Pathogenic Yersinia species impair activation of transcription factor NF-kappaB and trigger apoptosis in macrophages. In this study, we dissected the mechanism of apoptosis induction by Yersinia. Selectively, Yersinia enterocolitica strains producing the eff...
متن کاملBacterial evasion of host immune defense: Yersinia enterocolitica encodes a suppressor for tumor necrosis factor alpha expression.
The ability of the enteropathogenic Yersinia enterocolitica to survive and proliferate in host tissue depends on a 70-kb plasmid known to encode a number of released Yersinia outer proteins that act as virulence factors by inducing cytotoxicity and inhibiting phagocytosis. This study demonstrates that one of the Yersinia outer proteins, the 41-kDa YopB, suppresses the production of tumor necros...
متن کاملYopJ-Induced Caspase-1 Activation in Yersinia-Infected Macrophages: Independent of Apoptosis, Linked to Necrosis, Dispensable for Innate Host Defense
Yersinia outer protein J (YopJ) is a type III secretion system (T3SS) effector of pathogenic Yersinia (Yersinia pestis, Yersinia enterocolitica and Yersinia pseudotuberculosis) that is secreted into host cells. YopJ inhibits survival response pathways in macrophages, causing cell death. Allelic variation of YopJ is responsible for differential cytotoxicity in Yersinia strains. YopJ isoforms in ...
متن کاملSerogroup-related escape of Yersinia enterocolitica YopE from degradation by the ubiquitin-proteasome pathway.
Pathogenic Yersinia spp. employ a type III protein secretion system that translocates several Yersinia outer proteins (Yops) into the host cell to modify the host immune response. One strategy of the infected host cell to resist the bacterial attack is degradation and inactivation of injected bacterial virulence proteins through the ubiquitin-proteasome pathway. The cytotoxin YopE is a known ta...
متن کاملMitogen-activated protein kinase-dependent interleukin-1α intracrine signaling is modulated by YopP during Yersinia enterocolitica infection.
Yersinia enterocolitica is a food-borne pathogen that preferentially infects the Peyer's patches and mesenteric lymph nodes, causing an acute inflammatory reaction. Even though Y. enterocolitica induces a robust inflammatory response during infection, the bacterium has evolved a number of virulence factors to limit the extent of this response. We previously demonstrated that interleukin-1α (IL-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 175 12 شماره
صفحات -
تاریخ انتشار 2005